skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Flores, Mario"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 1, 2026
  2. Diabetic foot ulcers (DFUs) are a severe complication of diabetes mellitus (DM), which often lead to hospitalization and non-traumatic amputations in the United States. Diabetes prevalence estimates in South Texas exceed the national estimate and the number of diagnosed cases is higher among Hispanic adults compared to their non-Hispanic white counterparts. San Antonio, a predominantly Hispanic city, reports significantly higher annual rates of diabetic amputations compared to Texas. The late identification of severe foot ulcers minimizes the likelihood of reducing amputation risk. The aim of this study was to identify molecular factors related to the severity of DFUs by leveraging a multimodal approach. We first utilized electronic health records (EHRs) from two large demographic groups, encompassing thousands of patients, to identify blood tests such as cholesterol, blood sugar, and specific protein tests that are significantly associated with severe DFUs. Next, we translated the protein components from these blood tests into their ribonucleic acid (RNA) counterparts and analyzed them using public bulk and single-cell RNA sequencing datasets. Using these data, we applied a machine learning pipeline to uncover cell-type-specific and molecular factors associated with varying degrees of DFU severity. Our results showed that several blood test results, such as the Albumin/Creatinine Ratio (ACR) and cholesterol and coagulation tissue factor levels, correlated with DFU severity across key demographic groups. These tests exhibited varying degrees of significance based on demographic differences. Using bulk RNA-Sequenced (RNA-Seq) data, we found that apolipoprotein E (APOE) protein, a component of lipoproteins that are responsible for cholesterol transport and metabolism, is linked to DFU severity. Furthermore, the single-cell RNA-Seq (scRNA-seq) analysis revealed a cluster of cells identified as keratinocytes that showed overexpression of APOE in severe DFU cases. Overall, this study demonstrates how integrating extensive EHRs data with single-cell transcriptomics can refine the search for molecular markers and identify cell-type-specific and molecular factors associated with DFU severity while considering key demographic differences. 
    more » « less
  3. OBJECTIVES/GOALS: Target: Computationally identify the markers of ulcer severity and risk of amputation from datasets that include demographics data, clinical, laboratory data, and medical history over 6000 patients. METHODS/STUDY POPULATION: In this study we will use tables of demographics such as age, gender, and ethnicity/race. Inspired by previous research we’ll include wound age (duration in days), wound size, number of concurrent wounds of any etiology, evidence of bioburden/infection, Wagner grade, being non ambulatory, renal dialysis, renal transplant, peripheral vascular disease, and patient hospitalization. Another table will include laboratory vital signs to include physiological variables such as height, weight, body mass index, pulse rate, blood pressure, respiratory rate, and temperature. We’ll include also social data like smoking status, socio-economic status, housing condition. RESULTS/ANTICIPATED RESULTS: Our project aligns with previous efforts to identify high risk Diabetic Foot Ulcer individuals but also takes a different perspective by collecting and marking clinical data from a subset of patients (e.g., severity, Hispanic versus non-Hispanic) and computationally process these data to provide a tool that can identify DFU severity and high-risk patients. We will obtain samples from Hispanics and non-Hispanics because these two groups are likely to have significant differences in the progression of ulcer severity. The rationale is that by comparing these two groups, we will assess and study the factors that are differentially present. It is our expectation that the proposed project will provide an easy-to-use tool for DFU progression and risk of amputation and contribute to identify high-risk individuals. DISCUSSION/SIGNIFICANCE: Diabetes prevalence estimates in Bexar County, TX exceeds national estimates (15.5% vs. 11.3%) and diagnosed cases are higher among Hispanic adults (13.4%) compared to their non-Hispanic white counterparts (9.5%). Late identification of severe foot ulcers minimizes the likelihood of reducing amputation risk. 
    more » « less
  4. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent responsible for coronavirus disease 2019 (COVID-19), has affected the lives of billions and killed millions of infected people. This virus has been demonstrated to have different outcomes among individuals, with some of them presenting a mild infection, while others present severe symptoms or even death. The identification of the molecular states related to the severity of a COVID-19 infection has become of the utmost importance to understanding the differences in critical immune response. In this study, we computationally processed a set of publicly available single-cell RNA-Seq (scRNA-Seq) data of 12 Bronchoalveolar Lavage Fluid (BALF) samples diagnosed as having a mild, severe, or no infection, and generated a high-quality dataset that consists of 63,734 cells, each with 23,916 genes. We extended the cell-type and sub-type composition identification and our analysis showed significant differences in cell-type composition in mild and severe groups compared to the normal. Importantly, inflammatory responses were dramatically elevated in the severe group, which was evidenced by the significant increase in macrophages, from 10.56% in the normal group to 20.97% in the mild group and 34.15% in the severe group. As an indicator of immune defense, populations of T cells accounted for 24.76% in the mild group and decreased to 7.35% in the severe group. To verify these findings, we developed several artificial neural networks (ANNs) and graph convolutional neural network (GCNN) models. We showed that the GCNN models reach a prediction accuracy of the infection of 91.16% using data from subtypes of macrophages. Overall, our study indicates significant differences in the gene expression profiles of inflammatory response and immune cells of severely infected patients. 
    more » « less
  5. Deep learning has been applied in precision oncology to address a variety of gene expression-based phenotype predictions. However, gene expression data’s unique characteristics challenge the computer vision-inspired design of popular Deep Learning (DL) models such as Convolutional Neural Network (CNN) and ask for the need to develop interpretable DL models tailored for transcriptomics study. To address the current challenges in developing an interpretable DL model for modeling gene expression data, we propose a novel interpretable deep learning architecture called T-GEM, or Transformer for Gene Expression Modeling. We provided the detailed T-GEM model for modeling gene–gene interactions and demonstrated its utility for gene expression-based predictions of cancer-related phenotypes, including cancer type prediction and immune cell type classification. We carefully analyzed the learning mechanism of T-GEM and showed that the first layer has broader attention while higher layers focus more on phenotype-related genes. We also showed that T-GEM’s self-attention could capture important biological functions associated with the predicted phenotypes. We further devised a method to extract the regulatory network that T-GEM learns by exploiting the attributions of self-attention weights for classifications and showed that the network hub genes were likely markers for the predicted phenotypes. 
    more » « less